
Adv. Java RMI

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 1 -

Remote Method Invocation (RMI)

RMI applications often comprise two separate programs, a Server and
a Client. A typical server program creates some remote objects, makes
references to these objects accessible, and waits for clients to invoke
methods on these objects. A typical client program obtains a remote
reference to one or more remote objects on a server and then invokes
methods on them. RMI provides the mechanism by which the server and the
client communicate and pass information back and forth. Such an application
is sometimes referred to as a Distributed Object Application.

 RMI is implemented only through Java which satisfies the concept
“write once, run any where” paradigm. RMI uses a registry server for
registering and locating objects. RMI allows Java programs to register their
class methods with the server. Once this has been set up, sending messages,
or invoking methods on remote processes, is as simple as invoking methods
on local objects. An object is said to be distributed, if it is available on the
network.

An RMI distributed application uses the RMI registry to obtain a
reference to a remote object. The Server calls the registry to associate (or
bind) a name with a remote object. The Client looks up the remote object
by its name in the server's registry and then invokes a method on it.

 RMI registry keeps track of the addresses of remote objects that are
being exported. All the objects are assigned unique names that are used to
identify them. The method bind() is used to bind an object in the registry. If
there is an object with the same name, then this method raises
AlreadyBoundException. To avoid this, we can use rebind() method to
replace the earlier one.

Adv. Java RMI

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 2 -

Advantages of Dynamic Code Loading

One of the central and unique features of RMI is its ability to download
the definition of an object's class if the class is not defined in the receiver's
Java virtual machine. All of the types and behavior of an object, previously
available only in a single Java virtual machine can be transmitted to another,
possibly remote, Java virtual machine. RMI passes objects by their actual
classes, so the behavior of the objects is not changed when they are sent to
another Java virtual machine. This capability enables new types and
behaviors to be introduced into a remote Java virtual machine, thus
dynamically extending the behavior of an application.

Remote Interfaces, Objects, and Methods

Like any other Java application, a distributed application built by using
Java RMI is made up of interfaces and classes. The interfaces declare
methods. The classes implement the methods declared in the interfaces.
Objects with methods that can be invoked across Java Virtual Machines are
called remote objects.

An object becomes remote by implementing a Remote interface. RMI

treats a remote object differently from a non-remote object when the object
is passed from one Java Virtual Machine to another Java Virtual Machine.
Rather than making a copy of the implementation object in the receiving
Java Virtual Machine, RMI passes a remote stub for a remote object. The
stub acts as the local representative for the remote object. The client invokes
a method on the local stub, which is responsible for carrying out the method
invocation on the remote object.

A stub for a remote object implements the same set of remote

interfaces that the remote object implements. This property enables a stub to
be cast to any of the interfaces that the remote object implements. However,
only those methods defined in a remote interface are available to be called
from the receiving Java Virtual Machine.

The package java.rmi contains classes, interfaces and sub packages

that can help in creating remote objects, access the remote methods of the
objects.

Adv. Java RMI

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 3 -

Designing and Implementing the Application Components

First, determine your application architecture, including which
components are local objects and which components are remotely accessible.

1. Defining the Remote Interface:

A Remote Interface specifies the methods that can be invoked
remotely by a client. The design of such interfaces includes the determination
of the types of objects that will be used as the parameters and return values
for these methods. Your interface should implement the java.rmi.Remote
interface.

2. Implementing the Remote Interface.

The methods of the Remote interface must be implemented by a
Remote object class.

3. Create Remote Objects in the RMI Registry:

Remote objects must implement one or more remote interfaces. The
remote object class may include implementations of other interfaces and
methods that are available only locally. If any local classes are to be used for
parameters or return values of any of these methods, they must be
implemented as well.

4. Invoke the methods of Remote Object:

Clients that use remote objects can be implemented at any time after
the remote interfaces are defined, including after the remote objects have
been deployed.

RMI Application should include 4 blocks of program

1. Interface contains only the prototype for methods

2. Implementation implements the methods of the interface

3. Server creates an object for implementation class

4. Client uses the remote object created by the server

In the Server program, Naming.rebind() method is used to bind the

object at “rmiregistry” location with a specified object name. The Client
program uses Naming.lookup() method to access the methods of the
remote object created by the Server.

Adv. Java RMI

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 4 -

Procedure to execute an RMI Application

1. Create Class Files (Compile all the 4 blocks of programs).

2. Generate Stub and Skeleton for the Implementation class with the
help of rmic utility as follows.
rmic -vcompat Implementation-File-Name

3. Create two directories named Client and Server.

4. Copy the following files into Client directory.
 Interface Class File
 Implementation Stub Class File
 Client Class File

5. Copy the following files into Server Directory.
 Interface Class File
 Implementation Class File
 Implementation Skeleton Class File
 Server Class File

6. Start the rmiregistry.

7. Run the Server program.

8. Run the Client program.

